

Wrocław University of Technology

Consensus as a Tool Supporting Customer Behaviour Prediction in Social CRM Systems

Adam Czyszczoń

Research tutor: dr hab. inż. Aleksander Zgrzywa, prof PWr.

Faculty of Computer Science and Management Institute of Informatics Division of Information Systems

10-13.09.2012

Overview

- Introduction
- Consensus System
- 3 Conclusion

CRM

CRM — Customer Relationship Management

"CRM is first of all a philosophy, or business strategy, whereas the tool supporting the realization of this philosophy/strategy becomes the technology of information processing."

- Ongoing and long-term process aimed at providing added value to the customer.
- Information is gathered from the beginning of customer-company contact, often before a person actually becomes a customer.
- Lead identified, potential customer.
- Opportunity estimated monetary value associated with an business event, for example acquiring a client or sending an offer.

CRM

CRM — Customer Relationship Management

"CRM is first of all a philosophy, or business strategy, whereas the tool supporting the realization of this philosophy/strategy becomes the technology of information processing."

- Ongoing and long-term process aimed at providing added value to the customer.
- Information is gathered from the beginning of customer-company contact, often before a person actually becomes a customer.
- Lead identified, potential customer.
- Opportunity estimated monetary value associated with an business event, for example acquiring a client or sending an offer.

CRM

CRM — Customer Relationship Management

"CRM is first of all a philosophy, or business strategy, whereas the tool supporting the realization of this philosophy/strategy becomes the technology of information processing."

- Ongoing and long-term process aimed at providing added value to the customer.
- Information is gathered from the beginning of customer-company contact, often before a person actually becomes a customer.
- Lead identified, potential customer.
- Opportunity estimated monetary value associated with an business event, for example acquiring a client or sending an offer.

CRM

CRM — Customer Relationship Management

"CRM is first of all a philosophy, or business strategy, whereas the tool supporting the realization of this philosophy/strategy becomes the technology of information processing."

- Ongoing and long-term process aimed at providing added value to the customer.
- Information is gathered from the beginning of customer-company contact, often before a person actually becomes a customer.
- Lead identified, potential customer.
- Opportunity estimated monetary value associated with an business event, for example acquiring a client or sending an offer.

CRM

CRM — Customer Relationship Management

"CRM is first of all a philosophy, or business strategy, whereas the tool supporting the realization of this philosophy/strategy becomes the technology of information processing."

- Ongoing and long-term process aimed at providing added value to the customer.
- Information is gathered from the beginning of customer-company contact, often before a person actually becomes a customer.
- Lead identified, potential customer.
- Opportunity estimated monetary value associated with an business event, for example acquiring a client or sending an offer.

CRM Systems

The market of CRM systems is rapidly growing.

[Gartner Says Worldwide CRM Market Grew 12.5 Percent in 2008, Gartner Press Release, www.gartner.com, Stamford 15.07.2009. IDG Polska, Ranking firm informatycznych i telekomunikacyjnych TOP 200 2008, Computerworld Polska, Warszawa 2009.]

- No system of among the world leading CRM vendors (SAP, Oracle, Salesforce.com, Microsoft) did not have similar functionality in 2010.
- World's CRM market value is forecasted to reach over \$20 billion in contrast to 2011 where revenues were projected to total \$16.5 billion

CRM Systems

The market of CRM systems is rapidly growing.

[Gartner Says Worldwide CRM Market Grew 12.5 Percent in 2008, Gartner Press Release, www.gartner.com, Stamford 15.07.2009. IDG Polska, Ranking firm informatycznych i telekomunikacyjnych TOP 200 2008, Computerworld Polska, Warszawa 2009.]

- No system of among the world leading CRM vendors (SAP, Oracle, Salesforce.com, Microsoft) did not have similar functionality in 2010.
- World's CRM market value is forecasted to reach over \$20 billion in contrast to 2011 where revenues were projected to total \$16.5 billior

CRM Systems

The market of CRM systems is rapidly growing.

[Gartner Says Worldwide CRM Market Grew 12.5 Percent in 2008, Gartner Press Release, www.gartner.com, Stamford 15.07.2009. IDG Polska, Ranking firm informatycznych i telekomunikacyjnych TOP 200 2008, Computerworld Polska, Warszawa 2009.]

- No system of among the world leading CRM vendors (SAP, Oracle, Salesforce.com, Microsoft) did not have similar functionality in 2010.
- World's CRM market value is forecasted to reach over \$20 billion in contrast to 2011 where revenues were projected to total \$16.5 billion.

Social CRM Systems

- Growth of interest in Social Network Services (blogs, Facebook, Flickr, Twitter).
- New type of media: Social Media.
- sCRM (or SCRM) is a CRM oriented on Social Media

"Social CRM is a philosophy and a business strategy, supported by a technology platform, business rules, processes, and social characteristics, designed to engage the customer in a collaborative conversation in order to provide mutually beneficial value in a trusted and transparent business environment. [...]"

[P. Greenberg. CRM at the Speed of Light: Social CRM Strategies, Tools, and Techniques for Engaging Your Customers. McGraw-Hill, fourth edition, 2010]

 CRM and sCRM are very close with a difference in technology use, process conception and ways of interaction with the customer.

Social CRM Systems

- Growth of interest in Social Network Services (blogs, Facebook, Flickr, Twitter).
- New type of media: Social Media.
- sCRM (or SCRM) is a CRM oriented on Social Media

"Social CRM is a philosophy and a business strategy, supported by a technology platform, business rules, processes, and social characteristics, designed to engage the customer in a collaborative conversation in order to provide mutually beneficial value in a trusted and transparent business environment. [...]"

[P. Greenberg. CRM at the Speed of Light: Social CRM Strategies, Tools, and Techniques for Engaging Your Customers. McGraw-Hill, fourth edition, 2010]

 CRM and sCRM are very close with a difference in technology use, process conception and ways of interaction with the customer.

Social CRM Systems

- Growth of interest in Social Network Services (blogs, Facebook, Flickr, Twitter).
- New type of media: Social Media.
- sCRM (or SCRM) is a CRM oriented on Social Media.

"Social CRM is a philosophy and a business strategy, supported by a technology platform, business rules, processes, and social characteristics, designed to engage the customer in a collaborative conversation in order to provide mutually beneficial value in a trusted and transparent business environment. [...]"

[P. Greenberg. CRM at the Speed of Light: Social CRM Strategies, Tools, and Techniques for Engaging Your Customers. McGraw-Hill, fourth edition, 2010]

 CRM and sCRM are very close with a difference in technology use, process conception and ways of interaction with the customer.

Social CRM Systems

- Growth of interest in Social Network Services (blogs, Facebook, Flickr, Twitter).
- New type of media: Social Media.
- sCRM (or SCRM) is a CRM oriented on Social Media.

"Social CRM is a philosophy and a business strategy, supported by a technology platform, business rules, processes, and social characteristics, designed to engage the customer in a collaborative conversation in order to provide mutually beneficial value in a trusted and transparent business environment. [...]"

[P. Greenberg. CRM at the Speed of Light: Social CRM Strategies, Tools, and Techniques for Engaging Your Customers. McGraw-Hill, fourth edition, 2010]

• CRM and sCRM are very close with a difference in technology use, process conception and ways of interaction with the customer.

Task and Definition

- The use of consensus approach is aimed at resolving contradictory forecasts of customer behaviour.
- Forecasts are provided by different agents working as independent Artificial Neural Network (ANN) systems.
- The goal of presented tool is to improve prediction functionality of customer behaviour.
- The task of consensus method is to determine version of knowledge which best reflects given versions.

Consensus System

whore

A – a finite set of attributes, each attribute $a \in A$ has a domain V_a (a finite set of elementary values)

X – a limite set of consensus carriers, $X = \{\prod (v_a) : a \in A\}$.

Z = a finite set of propositional calculus, for which the model is relation system (X = A)

Task and Definition

- The use of consensus approach is aimed at resolving contradictory forecasts of customer behaviour.
- Forecasts are provided by different agents working as independent Artificial Neural Network (ANN) systems.
- The goal of presented tool is to improve prediction functionality of customer behaviour.
- The task of consensus method is to determine version of knowledge which best reflects given versions.

Consensus System

$$CS = \langle A, X, P, Z \rangle$$

where

A – a finite set of attributes, each attribute $a \in A$ has a domain V_a (a finite set of elementary values)

X – a finite set of consensus carriers. $X = \{ \prod (V_a) : a \in A \}$

P- a finite set of relations on carriers from X, each relation is of some type T (for $T\subseteq A$).

7-a finite set of propositional calculus, for which the model is relation system (X/P)

Task and Definition

- The use of consensus approach is aimed at resolving contradictory forecasts of customer behaviour.
- Forecasts are provided by different agents working as independent Artificial Neural Network (ANN) systems.
- The goal of presented tool is to improve prediction functionality of customer behaviour.
- The task of consensus method is to determine version of knowledge which best reflects given versions.

Consensus System

$$CS = \langle A, X, P, Z \rangle$$

where

A – a finite set of attributes, each attribute $a \in A$ has a domain V_a (a finite set of elementary values).

X – a finite set of consensus carriers. $X = \{ \prod (V_a) : a \in A \}$

P – a finite set of relations on carriers from X, each relation is of some type T (for $T \subseteq A$).

Z – a finite set of propositional calculus, for which the model is relation system (X.P)

Task and Definition

- The use of consensus approach is aimed at resolving contradictory forecasts of customer behaviour.
- Forecasts are provided by different agents working as independent Artificial Neural Network (ANN) systems.
- The goal of presented tool is to improve prediction functionality of customer behaviour.
- The task of consensus method is to determine version of knowledge which best reflects given versions.

Consensus System

$$CS = \langle A, X, P, Z \rangle$$

where

A – a finite set of attributes, each attribute $a \in A$ has a domain V_a (a finite set of elementary values).

X – a finite set of consensus carriers, $X = \{\prod (V_a) : a \in A\}$

P – a finite set of relations on carriers from X, each relation is of some type T (for $T \subseteq A$).

Z – a finite set of propositional calculus, for which the model is relation system (X,P)

Task and Definition

- The use of consensus approach is aimed at resolving contradictory forecasts of customer behaviour.
- Forecasts are provided by different agents working as independent Artificial Neural Network (ANN) systems.
- The goal of presented tool is to improve prediction functionality of customer behaviour.
- The task of consensus method is to determine version of knowledge which best reflects given versions.

Consensus System:

$$CS = \langle A, X, P, Z \rangle \tag{1}$$

where

A – a finite set of attributes, each attribute $a \in A$ has a domain V_a (a finite set of elementary values).

X – a finite set of consensus carriers, $X = \{\prod (V_a) : a \in A\}$. P – a finite set of relations on carriers from X, each relation is of some type T (for $T \subseteq A$).

Z – a finite set of propositional calculus, for which the model is relation system (X,P)

Knowledge Scope

In sCRM key structural elements of knowledge about customer concern:

- basic information about client (age, gender, city etc.),
- extended information (favourite categories of products, complaints, opportunities),
- properties related to Social Media (interests on Facebook, followers on Twitter),

Knowledge Scope

customer loyalty:

Recency Frequency Money:

$$RFM = (R \cdot \alpha) + (F \cdot \beta) + (M \cdot \gamma)$$
 (2)

where

R – number of days since last purchase,

F – total number of purchases.

M – total value of purchases,

 α – weight of last purchase, β – weight of number of purchases,

 γ – weight of the value of purchases,

Next Purchase Probability:

$$NPP = (\frac{\alpha}{\beta})^n \tag{3}$$

where

 α – number of days between first and last purchase,

 β – number of days taken into account in historical client analysis,

n – number of purchases in the entice historical period.

Customer LifeTime Value:

where
$$LTV = \alpha + \beta$$
 (4)

 α – annual profit from sales of products to the customer,

 β – number of years of customer-company relation.

- Agents represent knowledge carriers about customer behaviour.
- Their knowledge is is stored in synaptic weights of ANN, based on a set of *profile* characteristics associated with some *activities*.

- Profile allows to differentiate clients on the basis of their individual set of attributes (age, gender, ..., RFM, ..., Facebook, Twitter).
- Activities concern elements which define his behaviour (categories, complaints, opportunities, leads).
- ANN is trained for each customer separately.

- Agents represent knowledge carriers about customer behaviour.
- Their knowledge is is stored in synaptic weights of ANN, based on a set of profile characteristics associated with some activities.

- *Profile* allows to differentiate clients on the basis of their individual set of attributes (age, gender, ..., RFM, ..., Facebook, Twitter).
- Activities concern elements which define his behaviour (categories, complaints, opportunities, leads).
- ANN is trained for each customer separately.

- Agents represent knowledge carriers about customer behaviour.
- Their knowledge is is stored in synaptic weights of ANN, based on a set of profile characteristics associated with some activities.

- *Profile* allows to differentiate clients on the basis of their individual set of attributes (age, gender, ..., RFM, ..., Facebook, Twitter).
- Activities concern elements which define his behaviour (categories, complaints, opportunities, leads).
- ANN is trained for each customer separately.

- Agents represent knowledge carriers about customer behaviour.
- Their knowledge is is stored in synaptic weights of ANN, based on a set of profile characteristics associated with some activities.

- *Profile* allows to differentiate clients on the basis of their individual set of attributes (age, gender, ..., RFM, ..., Facebook, Twitter).
- Activities concern elements which define his behaviour (categories, complaints, opportunities, leads).
- ANN is trained for each customer separately.

Knowledge Structure

- Knowledge about each client is composed of:
 - attributes and their values,
 - relations and conditions on those attributes.

Attributes and Values

$$A = \{Agent, RFM, NPP, LTV, Facebook, Twitter, Category, Value\}$$
 (5)

$$X = \left\{ \prod (V_{Agent}), \prod (V_{RFM}), \prod (V_{NPP}), \dots, \prod (V_{Value}) \right\}$$
 (6)

where

```
V_{Agent} = \{a_1, a_2, a_3, \dots, a_n\}
V_{RFM} = [1, +\infty]
V_{NPP} = [0, 1]
V_{LTV} = [1, +\infty]
V_{Facebook} = [0, +\infty]
V_{Twitter} = [0, +\infty]
V_{Category} = \{c_1, c_2, c_3, \dots, c_n\}
V_{Value} = [1, +\infty]
```


Knowledge Structure

Relations and Conditions

```
P = \{Purchase, Opportunity, Lead\}
                                                                                                                     (7)
where Purchase, Opportunity, Lead are following types of relations:
Purchase: { Agent, RFM, NPP, LTV, Facebook, Twitter, Category, Value}
Opportunity: { Agent, Facebook, Twitter, Category, Value}
Lead: { Agent, Facebook, Twitter, Category }
Above relations have to satisfy following conditions:
           Z = \{
                                 (Purchase(a, r, n, l, f, t, c, v)) \Rightarrow (\neg Lead(a, f, t, c)),
                                    (Lead(a, f, t, c)) \Rightarrow (Opportunity(a, f, t, c, v)),
                       (Purchase(a, r, n, l, f, t, c, v) \land r > 300) \Rightarrow (Opportunity(a, f, t, c, v)),
                       (Purchase(a, r, n, l, f, t, c, v) \land n > 0.7) \Rightarrow (Opportunity(a, f, t, c, v)),
                                                                                                                     (8)
                      (Purchase(a, r, n, l, f, t, c, v) \land l > 1000) \Rightarrow (Opportunity(a, f, t, c, v)),
                        (Purchase(a, r, n, l, f, t, c, v) \land t > 10) \Rightarrow (Opportunity(a, f, t, c, v))
```


Conflict Situations

$$s = \langle P, A \to B \rangle$$
 (9)

where

A represents conflict subject and B the content of the conflict.

$$s_1 = \langle Purchase, Category \rightarrow \{RFM, NPP, LTV, Facebook, Twitter, Value\} \rangle$$
 (10)
 $s_2 = \langle Opportunity, Category \rightarrow \{Facebook, Twitter, Value\} \rangle$ (11)

$$s_3 = \langle Lead, Category \rightarrow \{Facebook, Twitter, Category\} \rangle$$
 (12)

Conflict Situations

Example o	f conflict	situation	s_1 .
-----------	------------	-----------	---------

Agent	Category	RFM	NPP	LTV	Facebook	Twitter	Value
a ₁	<i>c</i> ₃	300	0.7	600	{2,5}	1	80
a_2	$\{c_1, c_2\}$	320	0.7	710	{1,5}	3	100
a_3	C ₁	250	0.5	600	Ø	Ø	50
a_4	$\{c_1, c_2\}$	280	8.0	650	{2,5}	1	100
a 5	C ₁	310	0.6	600	{2,5,7}	11	50

Example of conflict situation so

Example of commet situation 32.							
Agent	Category	Facebook	Twitter	Value			
a ₁	<i>c</i> ₃	5	Ø	50			
a_2	$\{c_1, c_2\}$	{1,5}	3	100			
a_4	$\{c_1, c_2\}$	{2,5}	1	100			
a_5	C ₁	{2,5,7}	11	50			
a_6	$\{c_1, c_3\}$	{2,3}	5	100			

Example of conflict situation s₃

Example of confinct situation 33.						
Agent	Category	Facebook	Twitter			
a ₆	<i>c</i> ₃	5	Ø			
a ₇	{c ₁ , c ₃ }	{1,2,3}	30			

Conflict Profiles

For each conflict subject $e \in Category$ we determine conflict profiles profile(e) which contain opinions of agents on given subject.

$$profile(e) = \left\{ r_{B \cup \{Agent\}} : r \in P \right\} \tag{13}$$

Example of conflict profiles for Purchase event.

			•				
Category	Agent	RFM	NPP	LTV	Facebook	Twitter	Value
C ₁	a ₂	320	0.7	710	{1,5}	3	100
C ₁	a ₃	250	0.5	600	Ø	Ø	50
<i>c</i> ₁	a ₄	280	8.0	650	{2,5}	1	100
C ₁	a ₅	310	0.6	600	{2,5,7}	11	50
<i>c</i> ₂	a ₂	320	0.7	710	{1,5}	3	100
c_2	a ₄	280	8.0	650	{2,5}	1	100
<i>C</i> ₃	a ₁	300	0.7	600	{2,5}	1	80

Conflict Profiles

Example of conflict	profiles for	Opportunity event.
---------------------	--------------	--------------------

Category	Agent	Facebook	Twitter	Value		
C ₁	a ₂	{1,5}	1	100		
<i>c</i> ₁	a ₄	{2,5}	1	100		
C ₁	a ₅	{2,5,7}	11	50		
C ₁	a ₆	{2,3}	5	100		
<i>C</i> ₂	a ₂	{1,5}	1	100		
<i>C</i> ₂	a ₄	{2,5}	1	100		
<i>c</i> ₃	a ₁	5	Ø	50		
<i>c</i> ₃	a ₆	{2,3}	5	100		

Example of conflict profiles for Lead event.

Category	Agent	Facebook	Twitter	Category
C ₁	a ₇	{1,2,3}	30	$\{c_1, c_3\}$
<i>C</i> ₃	a ₆	5	Ø	<i>c</i> ₃
<i>c</i> ₃	a ₇	{1,2,3}	30	$\{c_1, c_3\}$

Consensus and Distance Function

Consensus of profile(e) on subject $e \in Category$ for situation $s = \langle P, A \rightarrow B \rangle$ is represented by tuple C(s, e) of type $A \cup B$, which satisfies the logical formulas from set Z. Based on the above the consensus definition of situation s is following:

$$C(s) = \{C(s, e) : e \in Category\}$$
 (14)

Distance function (reflecting element shares in the distance):

$$\rho(X,Y) = \frac{1}{2\operatorname{card}(V_a) - 1} \sum_{z \in V} \operatorname{Part}(X,Y,z)$$
 (15)

where

Part(X, Y, z) = 1 for every $z \in X \cap Y$ Part(X, Y, z) = 0 for every $z \in X \setminus Y$ Part(X, Y, z) = 0 for every $z \in V_a \setminus (X \cup Y)$

Consensus Determination Algorithm

```
Input: Set of conflict situation tuples S = \{\langle s_{11}, s_{21}, s_{31} \rangle, \langle s_{12}, s_{22}, s_{32} \rangle, \dots, \langle s_{1n}, s_{2n}, s_{3n} \rangle\}.
Output: Set of consensus tuples C = \{\langle C(s_{11}), C(s_{21}), C(s_{31}) \rangle, \dots, \langle C(s_{1n}), C(s_{2n}), C(s_{3n}) \rangle\}.
        C \leftarrow \emptyset
1.
        for sTuple \in S do
3:
             C(s) \leftarrow \langle \rangle
4:
             for s \in sTuple do
5:
                  C(s,e) \leftarrow \emptyset
6:
                 for e \in Category and Category \in s do
7:
                      for prediction \in Agent(e) do
8.
                           profile(e) \leftarrow profile(e) \cup prediction
9.
                      end
10:
                     for subjectSet \in profile(e) do
11:
                          for V_b \in B do
12:
                               \rho_{V_b} \leftarrow \rho_{V_b} \cup \rho(V_b, profile(e)_{subjectSet+1, V_b})
13:
                          end
14.
                     end
                      C(s,e) \leftarrow C(s,e) \cup max(\rho_e)
15:
16:
                 end
17:
                 C(s) \leftarrow C(s) \cup C(s,e)
18.
            end
19:
            C_{sTuple} \leftarrow C_{sTuple} \cup C(s)
20.
```


- Agents are considered as knowledge carriers which store knowledge about customer behaviour in synaptic weights of ANN.
- In sCRM systems we distinguished three events: Purchase, Opportunity and Lead.
- Those events represent the actual targets of behaviour forecasts
- Every event is described by *attributes*, *values*, *relations* and *conditions* which allows to give their definitions.
- In order to establish consensus C(s) distance function and consensus determination algorithm were used.

- Agents are considered as knowledge carriers which store knowledge about customer behaviour in synaptic weights of ANN.
- In sCRM systems we distinguished three events: Purchase, Opportunity and Lead.
- Those events represent the actual targets of behaviour forecasts
- Every event is described by *attributes*, *values*, *relations* and *conditions* which allows to give their definitions.
- In order to establish consensus C(s) distance function and consensus determination algorithm were used.

- Agents are considered as knowledge carriers which store knowledge about customer behaviour in synaptic weights of ANN.
- In sCRM systems we distinguished three events: Purchase, Opportunity and Lead.
- Those events represent the actual targets of behaviour forecasts.
- Every event is described by *attributes*, *values*, *relations* and *conditions* which allows to give their definitions.
- In order to establish consensus C(s) distance function and consensus determination algorithm were used.

- Agents are considered as knowledge carriers which store knowledge about customer behaviour in synaptic weights of ANN.
- In sCRM systems we distinguished three events: Purchase, Opportunity and Lead.
- Those events represent the actual targets of behaviour forecasts.
- Every event is described by *attributes*, *values*, *relations* and *conditions* which allows to give their definitions.
- In order to establish consensus C(s) distance function and consensus determination algorithm were used.

- Agents are considered as knowledge carriers which store knowledge about customer behaviour in synaptic weights of ANN.
- In sCRM systems we distinguished three events: Purchase, Opportunity and Lead.
- Those events represent the actual targets of behaviour forecasts.
- Every event is described by *attributes*, *values*, *relations* and *conditions* which allows to give their definitions.
- In order to establish consensus C(s) distance function and consensus determination algorithm were used.

Thank you for attention.

References

- A. Czyszczoń, A. Zgrzywa. Zastosowanie sztucznych sieci neuronowych do przewidywania zachowania klientów w systemie CRM, pp. 61–72. Wydawnictwo WTN, xviii edition, 2011.
- N. T. Nguyen. Advanced Methods for Inconsistent Knowledge Management (Advanced Information and Knowledge Processing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2008.
- N. T. Nguyen. Consensus system for solving conflicts in distributed systems. Information Sciences, 147(1–4):91 – 122, 2002.
- 4 I. Grzanka. Kapitał społeczny w relacjach z klientami. CeDeWu, 2009.
- 6 Gartner Inc. Gartner Press Release. http://www.gartner.com/it/section.jsp, February 2012.
- P. Greenberg. CRM at the Speed of Light: Social CRM Strategies, Tools, and Techniques for Engaging Your Customers. McGraw-Hill, fourth edition, 2010.
- W. Urban, D. Siemieniako. Lojalność klientów. Modele, motywacja i pomiar. Wydawnictwo Naukowe PWN. Warszawa. 2008.